
1

Automatic Document Classification: A thorough Evaluation of
various Methods

Christoph Goller1, Joachim Löning2, Thilo Will2, Werner Wolff2

SAIL-LABS1

(Speech and Artificial Intelligence Labs)
Balanstr. 57

81541 München
Germany

http://www.sail-labs.de
Email: christoph.goller@sail-labs.de

iXEC2

(Executive Information Systems GmbH)
Lilienthalstr. 25

D-85399 Hallbergmoos
Germany

http://www.ixec.com

Abstract
(Automatic) document classification is generally defined as
content-based assignment of one or more predefined categories
to documents. Usually, machine learning, statistical pattern
recognition, or neural network approaches are used to construct
classifiers automatically. In this paper we thoroughly evaluate a
wide variety of these methods on a document classification task
for German text. We evaluate different feature construction and
selection methods and various classifiers. Our main results are:
(1) feature selection is necessary not only to reduce learning and
classification time, but also to avoid overfitting (even for
Support Vector Machines); (2) surprisingly, our morphological
analysis does not improve classification quality compared to a
letter 5-gram approach; (3) Support Vector Machines are
significantly better than all other classification methods.

1 Introduction
Document classification is known under a number
of synonyms such as document / text categorization
or routing and topic identification. For more work
on automatic document classification see e.g. the
TREC-conference series [1].

Basically document classification can be defined
as content-based assignment of one or more
predefined categories (topics) to documents.
Document classification can be used for document
filtering and routing to topic-specific processing
mechanisms such as information extraction and
machine translation. However, it is equally useful
for filtering and routing documents directly to
humans. Applications are e.g. filtering of news
articles for knowledge workers, routing of customer
email in a customer service department, or detection
and identification of criminal activities for police,
military, or secrete service environments.

Manual document classification is known to be
an expensive and time-consuming task. Machine
learning approaches to classification suggest the

automatic construction of classifiers using induction
over pre-classified sample documents. In this paper
we thoroughly evaluate and compare various
methods for this kind of automatic document
classification.

Section 2 defines automatic document
classification and relates it to document retrieval. In
Section 3 we describe the document corpus used for
our experiments. In Section 4 we introduce the
different approaches that we have selected and
evaluate them from a theoretical point of view. The
experimental comparison follows in Section 5. We
summarize our results in Section 6 and present some
ideas for further improving automatic document
classification.

2 Automatic Document
Classification

We can distinguish two phases in automatic
document classification, the learning phase and the
subsequent classification phase (see Figure 1). In
the learning phase users define categories (topics) in
which they are interested (their information need) by
giving sample documents (training examples) for
each of these categories. Most methods for
automatic document classification also require
counterexamples for each category that is sample
documents that do not deal with the respective topic.

In a standard application for automatic document
classification like news filtering users assign
categories to the documents of a selected collection
by hand. Documents may be assigned to more than
one category if they deal with several of the topics
or if one has a hierarchy of topics. The document
collection used for learning should be as
representative as possible for the documents that one

2

expects to encounter in the future. All documents
that are not assigned to a category serve as
counterexamples for this category.

The topic learner component analyzes the sample
documents and tries to identify the content that is
specific for each category. This analysis is
essentially an inductive reasoning process which
involves generalization and abstraction. The output
is a model for each category which is represented by
a set of classifier parameters. Most classifiers make
a priori assumptions about the underlying model
and its complexity. If the assumed model complexity
is too high, overfitting can occur. This means that
the model overspecializes with respect to the
training examples and generalization to new
previously unseen examples becomes bad.
Overfitting is one of the biggest problems in
machine learning. Normally one assumes that the
learning phase is invoked very rarely. Therefore
efficiency is not of primary importance.

In the classification phase new (previously
unseen) documents can be given to the topic
classifier which returns a topic association (a rating
or classification for each topic). Basically, it tells the
user whether the document deals with the training
topics and especially with which topics it deals. It is
assumed that a lot of documents have to be
classified. In a news filtering application new
messages constantly arrive and have to be filtered or
routed. Therefore efficiency is very important for
the classification phase.

Automatic document classification is closely
related to document retrieval (see Figure 2). In
document retrieval the user specifies his information
need be giving a query, which is analyzed and then
applied to a relatively fixed and preprocessed

(indexed) document corpus. The relevant documents
are presented to the user.

There are two main differences between
automatic document classification and document
retrieval. The first difference is a rather technical
one. In document retrieval the documents which are
compared to the users information need are typically
members of a big and relatively fixed document
corpus which is preprocessed (indexed)
independently of the individual queries. Normally,
queries are small. They can be applied to the whole
corpus in parallel and do not have to be applied to
every document sequentially. Usually a lot of
queries have to be answered and new queries
constantly arrive. Therefore query analysis also has
to be very efficient. In document classification, the
users' information need (topics) is relatively stable.
However, one does not have a fixed document
collection which can be preprocessed. Normally
documents have to be processed sequentially by the
classifier.

The second difference concerns the way how the
information need is specified. In document retrieval
the users' information need is specified by usually
small queries (keywords). The users have to know

Topic Association

Definition of Topics 1 .. N

sample documents

Learning Phase

User Topic
Learner

Classifier
Parameters
for Topics

1 .. N

Topic
Classifier

User
Document

Classification

User Query
Analysis

Document
Repository

Query

Relevant
Documents

Figure 1: Document Classification

Figure 2: Document Retrieval

3

exactly what they are interested in. Differences in
language uses between authors of documents and
users who specify queries often lead to low recall.
Therefore, query expansion by using thesauri or
domain models is very important. In document
classification users specify their information need by
selecting documents as examples and
counterexamples for a topic. If there are enough
sample documents and if they are representative for
the kind of documents usually encountered,
classification will be quite good. The users don't
have to know exactly what they are looking for and
the use of thesauri or domain models is less
important. However, this difference between
document classification and retrieval disappears if
we consider document retrieval with user feedback.
Here the users are allowed to refine their original
queries by selecting relevant an non-relevant
documents from the documents that are presented by
the retrieval system as answer to their original
query.

3 Test Corpus
As test corpus for automatic document classification
we used a subset of articles from the German
newspaper “Süddeutsche Zeitung (1998)” (SZ). The
CD-Rom version [2] of the SZ contains topic-labels
for most of the articles. Some articles are labeled
with more than one topic. From the articles from the
“München” section (local news) we selected those
20 topics with the highest numbers of articles (see
Table 1). The total number of articles used in the
experiments is 1083. This is less than the sum of
column 2 from Table 1 due to multiple topic
assignments for some of the articles.

Topic #of
articles

Raubüberfälle in München 112
Abschiebung von "Mehmet" 95
SZ-Serie Das ganze Leben ist ein Test 79
Diebstähle in München 71
Oktoberfest 1998 62
Mordfälle in München 1998 62
Umbau des Münchner Olympiastadions 60
Uhl, Hans-Peter 52
Brände in München 52
SZ-Serie Vier für München 51
Flughafen München GmbH 47
Mordversuche in München 45
Verkehrsunfälle in München 45
Betrugsdelikte in München 43
Adventskalender der SZ 42

S-Bahn in München 39
Ausländer in München 37
Illegaler Drogenhandel in München 37
Landtagswahl 1998 in Bayern 36
Kiesl, Erich 35

Table 1: Test Corpus.

4 Selected Approaches and
Theoretical Evaluation

4.1 Feature Construction
In Section 2 we define automatic document
classification as an inductive reasoning task. This of
course suggests the use of classification techniques
from the fields of machine learning, statistical
pattern recognition and neural networks. However,
almost all existing learning and classification
techniques require vectors of (real) numbers as
input. They cannot work directly on documents
(text). Therefore, vector representations of
documents have to be constructed in order to make
these methods applicable. The process of
constructing these vector representations is called
feature (vector) construction. Feature construction
methods generally differ in the amount of linguistic
and statistic sophistication that is applied. We
compared two kinds of features, viz. letter 5-gram
features and features constructed by a morphological
analysis.

4.1.1 Letter 5-gram Features
For our first approach we generated letter 5-grams
without applying any tokenization. Special
characters like “!%&$” and whitespaces were
included. We did not distinguish upper and lower
case characters. The reason for including inter-word
5-grams is that in this way at least some multiword
phrases (e.g. 'New York' in the example sentence
below) are represented. The reason for including
whitespaces is that we wanted short important
strings like “ IBM ” (that are always included in
inter-word 5-grams) not to become unrecognizable
because of their varying context.

Example sentence:
New York ist groß.

5-gram features:
'new_y', 'ew_yo', 'w_yor', '_york', 'york_', 'ork_i',
'rk_is', k_ist', '_ist_', 'ist_g', st_gr', t_gro', '_groß',
'groß.'

4

Topic 1 2 3 4 5
Abschiebung von "Mehmet" ehmet mehme hmet" met"_ "mehm
Adventskalender der SZ ür_gu skale ute_w erke_ adven
Ausländer in München ölker völke _bevö evölk lkeru
Betrugsdelikte in München etrug betru trugs ädigt aatsa
Brände in München brand _bran euerw rwehr erweh
Diebstähle in München einbr _einb _dieb stohl estoh
Flughafen München GmbH ghafe hafen flugh lugha ughaf
Illegaler Drogenhandel in München rogen ealer droge _drog deale
Kiesl, Erich iesl_ h_kie ch_ki kiesl _kies
Landtagswahl 1998 in Bayern agswa _wahl _wähl ähler tagsw
Mordfälle in München 1998 _mord mord_ s_opf pfers es_op
Mordversuche in München _mord hlags bensg tots totsc
Oktoberfest 1998 wiesn _wies berfe iesn- oberf
Raubüberfälle in München berfa erfal überf rfall räube
S-Bahn in München bahn- s-bah -bahn _s-ba e_s-b
SZ-Serie Das ganze Leben ist ein Test _test r_tes _prüf klass bewer
SZ-Serie Vier für München ier_f ür_mü für_m vier_ r_mün
Uhl, Hans-Peter _uhl r_uhl er_uh ._uhl hans-
Umbau des Münchner Olympiastadions stadi adion tadio _umba umbau
Verkehrsunfälle in München prall unfal rletz erlet unfa

Table 2: The five most relevant 5-gram features for each topic.

4.1.2 Morpheme Features
For our second approach we implemented a simple
morphological analyzer for German which
combines inflectional and derivational stemming
and a word compound analysis. After tokenization
tokens are analyzed as concatenations of the
following four morphological categories:

category examples lexicon
entries1

Verurteilung aber
v prefix ver 111
s (word-)stem urteil 6.61

4
e suffix

ung
97

t solitary stem aber 132

An admissible analysis is subject to the following
two restrictions:

1 The starting point for prefix, suffix, and stem

lexicons were lexicons developed for hyphenation
by the Technical University of Vienna [3].
However, we considerably extended and modified
these lexicons.

1. words analyzed as t consist of just this
morpheme (no pre- or suffixes)

p = t

2. otherwise, the analysis of words follows the
regular pattern p

p = w+

w = v*s+e*

In order to tune the morphological analyzer
heuristics concerning the ratio between the
morphological categories in an analyzed token were
developed.

We tested our morphological analyzer on the
Munich part of the SZ (176000 unique tokens). For
our test 1000 tokens were randomly selected. The
analyzer was able to analyze 77.4% of the test
tokens. 91.3% of the analyzed words were classified
as correctly analyzed by humans. 5.1% of the
analyzed tokens were proper names or misspelled
words that were analyzed nonetheless. For 3.6% the
analysis was incorrect. The 22.6% of the tokens that
could not be analyzed by our morphological
analyzer were mainly irreducible words such as
names, abbreviations, monosyllables, foreign words,
misspellings, dialect words, or numbers. Only 7.7%
of the tokens that could not be analyzed

5

Topic 1 2 3 4 5
Abschiebung von "Mehmet" mehmet mehmets eltern ausweis türk
Adventskalender der SZ kalend adventkalend advent süddeutschen hilfwerk
Ausländer in München völk bevölk länder ausländer multikultur
Betrugsdelikte in München betrug trug geschäd reu zweihalb
Brände in München brand feuer feuerwehr lösch wehr
Diebstähle in München dieb stohl gestohl einbrech stahl
Flughafen München GmbH hafen flughafen flug airport fmg
Illegaler Drogenhandel in München deal drog rauschgift rausch heroin
Kiesl, Erich kiesl erich altober kiesls altob
Landtagswahl 1998 in Bayern tagwahl wähl wahl stimmkreis landtag
Mordfälle in München 1998 mord töt mordkommiss kommiss opfer
Mordversuche in München mord mordversuch mordsuch stoch totschlag
Oktoberfest 1998 wiesn oktoberfest zelt oktober bier
Raubüberfälle in München überfall raub räuber beut tät
S-Bahn in München fahrgäste verspät stammstreck streck bahnhof
SZ-Serie Das ganze Leben ist ein Test test prüf bewerb schul klass
SZ-Serie Vier für München vier_für uns ja was häus
Uhl, Hans-Peter hanspeter uhl peter hans csu
Umbau des Münchner Olympiastadions stadion olympiastadion umbau olympia architekt
Verkehrsunfälle in München unfall schleuder prall erfaßt verletz

Table 3: The five most relevant morpheme features for each topic.

could be analyzed by humans.
From every analyzed token we generated the

following features: (1) the whole token without
suffix; (2) every stem with its associated prefix and
without suffix; (3) every stem; (4) 2-grams of stems.
Furthermore, every irreducible token became a
feature by itself. In order to represent multiword
phrases, we additionally included those inter-word
2-grams of stems which had a very high frequency
in our corpus.

4.1.3 From Features to Feature Vectors
The features described in Sections 4.1.1 and 4.1.2
are strings of characters. The number of unique
features in the document collection determines the
dimension of the feature vector representations for
the documents and the position of each feature in an
alphabetically ordered list of all features determines
its position in the feature vector representations. A
feature vector representation for a document is
simply a vector of weights for all the features2.

We started our experiments with binary weights
(only using the information whether a feature occurs
in a document or not). However, in a first evaluation
phase we found that using the term frequency (TF),

2 If a new document (classification phase)

contains features not encountered in the document
collection, these features are simply ignored.

which is the number of occurrences of the feature in
the document, improves classification quality for all
classifiers. We also found that using the product of
term frequency and inverse document frequency
(IDF = # documents in the collection / # documents
that contain the feature), which is a very popular
weighting scheme in document retrieval, improves
classification quality for the Centroid classifier and
the Support Vector Machine considerably, while it
does not change results for the other classifiers3. For
Support Vector Machines a refinement (the square
root of TFIDF) further improves classification
quality. For a brief description of the classifiers that
we used see Section 4.3. For a discussion of TFIDF
see e.g. [4].

4.1.4 General Comparison of N-gram
Features and Morpheme Features

N-gram letter features have a variety of advantages
compared to morpheme features. Implementation of
n-gram feature construction is very easy and
independent of language. N-gram features
automatically perform certain kinds of stemming and
they are robust against misspellings. Furthermore,
N-gram features automatically capture many kinds

3 Interestingly, even the Perceptron was not able

to profit from the additional IDF-weighting.

6

of multiword phrases, if one considers n-grams
across word-borders (inter-word n-grams).

Morphological analysis is of course language-
specific and it is quite an effort to implement a
morphological analyzer. One has to develop the
lexicons, take care of incorrectly analyzed words
and ambiguities, and one has to avoid both, over-
and under-stemming. For German, word compound
analysis is also very important. Furthermore, a
morphological analyzer consumes more
computational resources than n-gram analysis.

However, there are also big advantages which
speak for morpheme features. It seems clear that
morpheme features contain more information than
n-gram features, since they represent meaningful
word-constituents even if these constituents are
longer then n characters. Therefore, classifiers built
from morpheme features are more understandable
than those built from n-gram features. Normally,
there are considerably fewer unique morpheme
features than e.g. 5-gram features for a given
document and morpheme features are less correlated
than n-gram features. The lower dimension of
morpheme feature vectors and the lower
correlatedness make feature selection /
dimensionality reduction and learning easier. In our
experiments the inverse file index of the test
collection for 5-gram features is five times bigger
than for morpheme features leading to an increase in
feature selection costs of a factor five. Tables 2 and
3 list the five most important features for each of our
test topics determined by the mutual information
measure (see Section 4.2). The higher correlatedness
of 5-gram features can easily be recognized since for
several topics the five most relevant 5-gram features
originate from only one word. For an experimental
comparison of 5-gram and morpheme features see
Section 5.4.

4.2 Feature Selection / Dimensionality
Reduction

For our test corpus about 30000 unique morpheme
features and about 185000 unique 5-gram features
were generated. Most classification methods cannot
handle such high-dimensional input (computational
costs for learning and/or classification become
intractable). A further problem is that the model
complexity for many classifiers increases with the
dimension of their input. This means that high-
dimensional input vectors can cause overfitting.
Therefore, dimensionality reduction or feature
subset selection methods have to be applied. There
are a lot of methods for dimensionality reduction
around in the statistics literature. One of them is

principal component analysis, in which orthogonal
(empirically independent) linear combinations of the
original features are determined which have the
highest variance. In the document retrieval and
classification area this approach is known as latent
semantic indexing [5]. However, the computational
costs are very high.

We decided to use a feature subset selection
method. This means that for each topic a subset of
the most relevant features is determined. In order to
determine the relevancy of a feature with respect to
a topic, we used the mutual information measure.
The definition of mutual information can be found
in every textbook on information theory. Basically,
the mutual information between a feature and a topic
tells us how much information the feature provides
for the topic (and vice versa). Of course one does
not know the mutual information between features
and topics. We estimated the mutual information
between the property that a document belongs to the
considered category and the property that the
document contains the considered feature.
Probabilities were estimated using empirical relative
frequencies. Tables 2 and 3 list the five most
relevant features found for our test topics in this
way.

Furthermore, we considered two extensions of
feature subset selection with mutual information:
FuCE (Feature subset selection using Classifier
Errors) and Autofeatures.

FuCE works as follows. First a set of relevant
features is constructed for every topic in the way
described above. The classifier is trained using these
features. Those documents of the training set which
the classifier does not classify correctly are used to
extend the set of features. False positives and false
negatives are used separately. For false positives we
determine features that distinguish them from real
positives. In the same way we determine features
that distinguish false negatives from real negatives.
For both tasks we again used mutual information.

Feature subset selection requires to determine the
number of features one wants to use and we
extensively explored how the classification
performance depends on the number of selected
features (Section 5.3). With Autofeatures we
implemented a method that determines the number
of relevant features for feature subset selection in a
topic-dependent way. Features are selected until the
sum of their individual mutual information with the
topic is greater than the entropy of the topic. This
takes into account that if there are some very unique
features for a topic, only these few features are
selected. On the other hand, if there are no features
containing much information for the topic, this

7

method selects a bigger subset of. The problem with
this method is, that features normally are not
independent of each other. Therefore, their joined
mutual information with a topic is normally much
smaller than the sum of their individual mutual
information with the topic. However, the joint
mutual information cannot be computed since the
statistical data are normally not sufficient. In our
experiments we therefore added features until the
summed mutual information exceeded the entropy
of the topic times a factor (2, 4, 6, 10, 20, 30, 50).

4.3 Classification Methods

4.3.1 Selected Classification Methods
We compared the following classification methods
in our experiments:

• Perceptrons (standard Perceptron algorithm that
produces a linear discrimination function),

• discrete Naive-Bayes (P(c|x) ~ P(x|c)P(c) =
ΠP(xi|c)P(c), if xi independent),

• MC4 (decision tree similar to the well-known
ID3),

• 3 Nearest-Neighbor (the new vector is assigned
to the class of the majority of its nearest
neighbors),

• Rocchio Centroid (very simple linear classifier
based on the difference between the means of
positive and negative examples), and

• Support Vector Machines.

Perceptron, Naive-Bayes, MC4, and Nearest-
Neighbor were taken from the MLC++ environment
[6] and used with their default parameter settings.
The Rocchio Centroid is well-known in document
retrieval [7]. For the support vector machine we
used the implementation from [8] with linear
kernels.

4.3.2 General Comparison of
Classification Methods

Perceptrons, Rocchio Centroids, and Support Vector
Machines with linear kernels produce linear
classifiers (hyperplanes separate the classes in
feature vector space). Of course this is a strong
restriction in expressivenes of the classifiers (a
strong model assumption). However, experience has
shown, that most document classification problems
are linearly separable. As far as learning is
concerned, the Rocchio Centroid does not have
much theoretical foundation. The Perceptron
learning rule seems much more appropriate since it
minimizes the number of incorrect classifications.

performance on train/test set with fixed number of features (morphemes)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 100 1000 10000

number of features

re
la

tiv
e

er
ro

r

perceptron-test
naive - bayes-test

3-n-n-test
mc4-test

centroid-test
perceptron-train

naive - bayes-train
3-n-n-train

mc4-train

centroid-train
SVM-test

3-n-n-test

perceptron-test

centroid-test

SVM-test

centroid-trainperceptron-train

mc4-train

3-n-n-train

naive-bayes-test

mc4-test

naive-bayes-train

Figure 3: Classification Quality on Training and Test Set with standard Feature Subset Selection
for Morpheme Features

8

Support Vector Machine learning has the best
theoretical foundation. Support Vector Machines are
less susceptible to overfitting than other learning
methods since the model complexity is independent
of the feature space dimension. The model
assumptions of Nearest-Neighbor, Naive-Bayes
(independence assumption), and decision trees (local
decisions) can also be critized. However, they are
different from the assumption of linear separability
and therefore a comparison is interesting.

The Nearest-Neighbor does not do any learning
at all. It simply stores the training examples.
Learning costs for the Rocchio Centroid are very
low, even with very high dimensions. Perceptron
and Support Vector Machine learning is tractable,
even for high dimensions, though it is more
expensive than Rocchio learning. Naive-Bayes and
decision tree learning is tractable only for low
dimensions at least in the implementations we used
(see also Section 5.2).

Classification costs are quite low for all
classifiers except for the Nearest-Neighbor where
the new feature vector has to be compared to all
training examples. The classifiers are all reasonably
small except for the Nearest-Neighbor classifier,
which grows with the number of training examples.

The decision tree has the best explanation
capabilities, however, inspecting the other

classifiers can also be helpful in order to understand
how the classification is done.

A lot of previous studies have shown that k-
Nearest-Neighbor and Rocchio Centroid are both
very suitable for document classification. It can be
said that they represent the state of the art in this
field. However, recent studies (on Reuters
benchmarks) indicate that Support Vector Machines
might be superior [9].

5 Experimental Comparison

5.1 General Remarks on the
Experimental Setup

In order to test the generalization capabilities of the
different classification methods, the test corpus
(Section 3) was split into two disjoint sets of
documents (a training set and a test set) which both
contained approximately 550 documents. The split
was stratified in the sense that the original ratio of
the topics was preserved. Only the training set was
used for feature subset selection and learning.

As error measure we computed the „relative
error“, that is the number of falsely classified texts
divided by the number of texts in the given topic
(positive examples), averaged over all 20 topics
(macro averaging). Since the number of positive and
negative examples differs about one order of

performance on train/test set with auto features (morphemes)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 100 1000 10000

features on the average

re
la

tiv
e

er
ro

r

perceptron-test

naive - bayes-test
3-n-n-test
mc4-test
centroid-test

svm-test
perceptron-train
naive - bayes-train
3-n-n-train

mc4-train
centroid-train
svm-train

3-n-n-test

naive-bayes-test
perceptron-test
mc4-test

centroid-test
naive-bayes-train

svm-test
centroid-train

mc4-train

perceptron-train

svm-train

3-n-ntrain

Figure 4: Classification Quality on Training and Test Set with Autofeature Subset Selection for
Morpheme Features

9

magnitude, this seems to be a more meaningful
measure than accuracy without the problems of the
F-measure [10].

In cases where very expensive experiments (like
training MC4 with more than 1000 features) aren’t
expected to show interesting results, we omitted
these experiments.

5.2 Classification Methods
Figure 3 shows the classification quality on training
and test sets for morpheme features with the
standard feature subset selection method. We use
these results to compare the different classification
methods. The Autofeature selection method and n-
gram features lead to the same results as far as the
comparison of classification methods is concerned.

Support Vector Machines produce the best
results both on test and training sets, are robust with
respect to the number of features and very fast at
training and at classification. The only drawback
seems to be the complexity of implementation.

The Centroid has the second best test set -
performance with over 1000 features, is very simple
and fast and is the only algorithm suitable for
retrieval, as it works also if there are only positive
examples for a category. The performance also
seems to be relatively robust to the number of
features used. A drawback is it’s poor performance
on the training set.

The Perceptron does a good job both on test and
training set with approximately 500 features. A
disadvantage are the relative high training costs. An
optimization by making use of sparseness of feature-
vectors may help.

It is interesting to see that with very few features,
Nearest-Neighbor and the MC4 do perform nearly
as good on the test set as the Centroid with 1000
features and far better on the training set. Note that
the Nearest-Neighbor even with few features is
relative slow (10 seconds classification time with 10
features, 550 texts, on a Pentium II – the centroid
takes only 1 second with 500 features). MC4 is fast
to train with few features and especially fast at
classification time.

5.3 Feature Subset Selection
In Figure 3 we see that classification quality on the
test sets decreases for all classifiers if too many
features are used. This happens with very few
features for the 3-Nearest-Neighbor, the Naive-
Bayes, and MC4. However, it also happens for the
Centroid and the Support Vector Machine for more
than 1000 features. If we look at the consistently
good results on the training sets, the only
explanation for the decrease on the test set is
overfitting. We think that the effect of overfitting
has not been investigated enough for document
classification so far. Our results indicate that feature

performance with fuce on train/test set with auto features (morphems)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 10 100 1000 10000

features on the average

re
la

tiv
e

er
ro

r

perceptron-test

perceptron-fuce-
test
centroid-test

centroid-fuce-
test
naivebayes-test

naivebayes+fuc
e-test
mc4-test

mc4+fuce-test

perceptron-train

perceptron-fuce-
train
centroid-train

centroid-fuce-
train
naivebayes-train

naivebayes+fuc
e-train
mc4-train

mc4+fuce-train

perceptron-test

naive-bayes-test

naive-bayes-train

centroid-train

centroid-fuce-train

perceptron-fuce-test

centroid-test

centroid-fuce-test

perceptron-fuce-train

perceptron-train

mc4-fuce-train

mc4-train

mc4-test

naive-bayes-fuce-train

mc4-fuce-test

naive-bayes-fuce-test

Figure 5: Classification Quality on Training and Test Set with FuCe Feature Subset Selection for
Morpheme Features

10

subset selection is essential in order to avoid
overfitting.

In Figure 4 the results with the Autofeatures
subset selection method are shown. The relative
errors are plotted against the average number of
features that this method computed for factors
between 2 and 50. The vector space methods
Centroid, Perceptron and Support Vector Machine
are not too sensible to changing the numbers of
features for high dimensions. Therefore, it does not
surprise that the Autofeature method leads to similar
results as the standard subset selection method in
high dimensions. On the other hand, with few
features we get an improvement for some classifiers
(e.g. the Centroid) with the Autofeature method.

Figure 5 shows our results achieved with the
FuCe subset selection method. For each classifier
we show only results with feature vector dimensions
that are suitable for the classifier: higher dimensions
for the vector space methods, lower ones for MC4
and Naive-Bayes. For the Support Vector Machine
we omitted these experiments because we didn’t
integrate the software fully in our environment.
FuCE almost everywhere improved training set
performance. Test set performance only improved in
some cases for the Perceptron and the Centroid.

5.4 N-grams vs. Morphemes
Figure 6 shows our results achieved with 5-gram
features. The classification quality is more or less
comparable to the one achieved with morpheme
features (Figure 4). However, Perceptron and
Support Vector Machine need less morpheme
features than 5-gram features to achieve an identical
classification quality. Our explanation for this is that
morpheme features contain more information than
5-gram features. Surprisingly, with few features the
Centroid with 5-gram features produces better
results than with morpheme features.

5.5 Significance of Results
To get a feeling for the significance of our results,
we computed the probability P that one classifier is
at least the observed number of times better than the
other, under the assumption this number is
binomially distributed (with probability of success=
0,5). Note that P can be interpreted as the
probability that the performance difference between
the two methods happens by chance. Here are the
results for some cases from Figure 4: For the
Centroid and Perceptron, the Centroid had a better
test set performance from 100 to 1500 features, this
corresponds to the 4 rightmost data-points in Figure
4. For the three points with the highest difference, P

performance on train/test set with auto features (ngrams)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

features on the average

re
la

tiv
e

er
ro

r

perceptron-test

3-n-n-test

centroid-test

svm-test

perceptron-train

3-n-n-train

centroid-train

svm-train

3-n-n-test

perceptron-test

centroid-test

svm-test

centroid-train
perceptron-train

svm-train

3-n-n-train

Figure 6 : Classification Quality on Training and Test Set with Autofeatures Subset Selection for 5-
Gram Features

11

was around 0,05. At the third data point from the
right, P was 0,24. For the Centroid and the Support
Vector Machine, we addressed the fourth data-point
from the right where these two classifiers show the
smallest difference. Here, P is below 0,02. Results
with a t-test are similar. We conclude that for the
given corpus, our results are sufficiently significant.

6 Conclusion
In this paper we have presented a thorough
evaluation of different approaches for document
classification. We have confirmed recent results
about the superiority of Support Vector Machines on
a new test set. Furthermore, we have shown that
feature subset selection or dimensionality reduction
is essential for document classification not only in
order to make learning and classification tractable,
but also in order to avoid overfitting. It is important
to see that this also holds for Support Vector
Machines. Last but not least, we have shown that
linguistic preprocessing not necessarily improves
classification quality.

We are convinced that in the long run linguistic
preprocessing like a morphological analysis pays off
for document classification as well as for document
retrieval. However, this linguistic preprocessing
probably has to be more sophisticated than our
simple morphological analysis. A big advantage of
linguistic preprocessing like a morphological
analysis compared to n-gram features is that
integration of thesauri, concept nets, and domain
models becomes possible.

Besides linguistic sophistication, statistics can
also help to produce good features. For the future we
plan to evaluate different methods for finding topic-
relevant collocations and multi-word phrases.

Furthermore, we think that feature selection with
mutual information can be improved. There should
be a better way for approximating the joint mutual
information of a feature set with a topic, than simply
summing up the individual mutual information of
every feature. Considering feature pairs probably
helps a lot. Furthermore, one should include the
term frequency into the computation of mutual
information.

Acknowledgements
At the time when this work was carried out, the
authors worked for iXEC. Writing of this paper took
place when the first author had changed to SAIL-
LABS, where he currently works in the content
group. He thanks SAIL-LABS for giving him the
possibility to write this paper.

References
[1] TREC (Text Retrieval Conference):

http://trec.nist.gov/
[2] Süddeutsche Zeitung

http:// www.sueddeutsche.de
http://www.diz-muenchen.de/cdrom.htm

[3] TU Wien: Sichere Sinnentsprechende
Silbentrennung
http://www.apm.tuwien.ac.at/research/SiSiSi-
dt.html

[4] Gerard Salton, and Michael J. McGill. 1983.
Introduction to Modern Information Retrieval.
New York: McGraw-Hill.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T.
Landauer, and R. Harshman. 1990. Indexing by
Latent Semantic Analysis. Journal of the
American Society for Information Science
41:391-407.

[6] Kohavi and Sommerfield, 1996, “MLC++
Machine Learning library in C++”, available at
http://www.sgi.com/Technology/mlc/

[7] J. Rocchio. 1971. Relevance Feedback in
Information Retrieval. In G. Salton, editor, The
SMART Retrieval System: Experiments in
Automated Document Processing, pages 313-
323. Prentice Hall Inc.

[8] T. Joachims. Making large-Scale SVM Learning
Practical. Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.
http://www-
ai.cs.unidortmund.de/DOKUMENTE/joachims_
99a.pdf

[9] T. Joachims. Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. Proceedings of the European
Conference on Machine Learning, Springer,
1998.

[10] D. D. Lewis. 1995. Evaluating and Optimizing
Autonomous Text Classification Systems, SIGIR
Conference 95.

